Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 3427, 2023 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-37296096

RESUMO

RNA binding proteins (RBPs) act as critical facilitators of spatially regulated gene expression. Muscleblind-like (MBNL) proteins, implicated in myotonic dystrophy and cancer, localize RNAs to myoblast membranes and neurites through unknown mechanisms. We find that MBNL forms motile and anchored granules in neurons and myoblasts, and selectively associates with kinesins Kif1bα and Kif1c through its zinc finger (ZnF) domains. Other RBPs with similar ZnFs associate with these kinesins, implicating a motor-RBP specificity code. MBNL and kinesin perturbation leads to widespread mRNA mis-localization, including depletion of Nucleolin transcripts from neurites. Live cell imaging and fractionation reveal that the unstructured carboxy-terminal tail of MBNL1 allows for anchoring at membranes. An approach, termed RBP Module Recruitment and Imaging (RBP-MRI), reconstitutes kinesin- and membrane-recruitment functions using MBNL-MS2 coat protein fusions. Our findings decouple kinesin association, RNA binding, and membrane anchoring functions of MBNL while establishing general strategies for studying multi-functional, modular domains of RBPs.


Assuntos
Cinesinas , Distrofia Miotônica , Humanos , Cinesinas/genética , Cinesinas/metabolismo , Processamento Alternativo , RNA/metabolismo , Distrofia Miotônica/genética , Distrofia Miotônica/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
2.
Cell Rep ; 34(3): 108634, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33472074

RESUMO

Myotonic dystrophy (DM) is caused by expanded CTG/CCTG repeats, causing symptoms in skeletal muscle, heart, and central nervous system (CNS). CNS issues are debilitating and include hypersomnolence, executive dysfunction, white matter atrophy, and neurofibrillary tangles. Here, we generate RNA-seq transcriptomes from DM and unaffected frontal cortex and identify 130 high-confidence splicing changes, most occurring only in cortex, not skeletal muscle or heart. Mis-spliced exons occur in neurotransmitter receptors, ion channels, and synaptic scaffolds, and GRIP1 mis-splicing modulates kinesin association. Optical mapping of expanded CTG repeats reveals extreme mosaicism, with some alleles showing >1,000 CTGs. Mis-splicing severity correlates with CTG repeat length across individuals. Upregulated genes tend to be microglial and endothelial, suggesting neuroinflammation, and downregulated genes tend to be neuronal. Many gene expression changes strongly correlate with mis-splicing, suggesting candidate biomarkers of disease. These findings provide a framework for mechanistic and therapeutic studies of the DM CNS.


Assuntos
Lobo Frontal/fisiopatologia , Distrofia Miotônica/genética , Transcriptoma/genética , Humanos
3.
Horm Behav ; 103: 54-61, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29807036

RESUMO

Many of estradiol's behavioral effects are mediated, at least partially, via extra-nuclear estradiol signaling. Here, we investigated whether two estrogen receptor (ER) agonists, targeting ERα and G protein-coupled ER-1 (GPER-1), can promote rapid anorexigenic effects. Food intake was measured in ovariectomized (OVX) rats at 1, 2, 4, and 22 h following subcutaneous (s.c.) injection of an ERα agonist (PPT; 0-200 µg/kg), a GPER-1 agonist (G-1; 0-1600 µg/kg), and a GPER-1 antagonist (G-36; 0-80 µg/kg). To investigate possible cross-talk between ERα and GPER-1, we examined whether GPER-1 blockade affects the anorexigenic effect of PPT. Feeding was monitored in OVX rats that received s.c. injections of vehicle or 40 µg/kg G-36 followed 30 min later by s.c. injections of vehicle or 200 µg/kg PPT. Selective activation of ERα and GPER-1 alone decreased food intake within 1 h of drug treatment, and feeding remained suppressed for 22 h following PPT treatment and 4 h following G-1 treatment. Acute administration of G-36 alone did not suppress feeding at any time point. Blockade of GPER-1 attenuated PPT's rapid (within 1 h) anorexigenic effect, but did not modulate PPT's ability to suppress food intake at 2, 4 and 22 h. These findings demonstrate that selective activation of ERα produces a rapid (within 1 h) decrease in food intake that is best explained by a non-genomic signaling pathway and thus implicates the involvement of extra-nuclear ERα. Our findings also provide evidence that activation of GPER-1 is both sufficient to suppress feeding and necessary for PPT's rapid anorexigenic effect.


Assuntos
Ingestão de Alimentos/efeitos dos fármacos , Receptor alfa de Estrogênio/agonistas , Estrogênios/farmacologia , Receptores Acoplados a Proteínas G/agonistas , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Animais , Ciclopentanos/farmacologia , Estradiol/farmacologia , Feminino , Ovariectomia , Fenóis/farmacologia , Pirazóis/farmacologia , Quinolinas/farmacologia , Ratos , Ratos Long-Evans , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...